Отдел мозга отвечающий за память: Какой орган отвечает за память. Отделы головного мозга. Их функции

Содержание

Какой орган отвечает за память. Отделы головного мозга. Их функции

Представляет собой основной регулятор всех функций, происходящих в живом организме. В центральное нервной системе он занимает особое место наряду со спинным мозгом.

Строение головного мозга человека и его функции до сих пор изучают ведущие специалисты в области медицины, нейрофизиологии, психиатрии и психологии. Однако многие его тайны не раскрыты до сих пор.

Основные функции отделов головного мозга

Серое вещество, из которого состоит человеческий мозг, представляет собой скопление нейронов. Их количество насчитывается около 25 млрд. Весь мозг покрыт 3 оболочками:

  1. твердой;
  2. мягкой;
  3. паутиной (спинномозговая жидкость, которая циркулирует по каналам этой оболочки защищает мозг от повреждений).

Вес мозга мужчины и женщины немного отличается: у дам его масса в среднем равняется 1245 г, а у представителей сильного пола - 1375 г. При этом стоит отметить, что его вес никаким образом не влияет на уровень умственного развития человека. В первую очередь это зависит от количества связей в головном мозге.

Жизнедеятельность человека полностью зависит от того, каким образом функционируют различные отделы головного мозга. В этом процессе особое место занимают клетки мозга, которые генерируют и передают импульсы.

Строение головного мозга человека вместе с основными функциями хорошо представлены в следующей таблице:

отдел мозга особенности строение выполняемые функции
продолговатый мозг регулирует обмен веществ, анализирует нервные импульсы, там сосредоточены центры жажды и голода, принимает информации от органов чувств координация движений
мост сосредоточены центры зрения и слуха, регулирует величину зрачка и кривизну хрусталика поддерживает устойчивость тела при ходьбе. отвечает за за рефлексы: кашель, работа, чихание т. д. инвертирует сердца и другие внутренние органы
мозжечок связывает

где находится и за что отвечает

А вы знаете, что кратеры на Луне обнаружили раньше, чем узнали, что человеческий мозг разделен на отдельные участки, каждый со своей специализацией? И в настоящее время этот уникальный инструмент управления нашим телом продолжает сохранять многие свои тайны.

А ученые, исследующие его функции, до сих пор приходят в удивление, раскрывая все новые свойства и особенности деятельности мозга. Ярким примером таких неожиданных открытий являются функции гиппокампа – небольшого парного образования в височных долях полушарий головного мозга.

Один из древнейших отделов головного мозга

Гиппокамп возник на заре эволюции позвоночных существ и прошел длительный путь развития, став необычайно важной частью структуры головного мозга человека. Свое немного странное название он получил благодаря изогнутой форме, напоминающей морского конька, а дословный перевод этого понятия – «изогнутый конь».

Гиппокамп – парный орган, его части располагаются в разных полушариях, но связаны между собой специальными нервными волокнами. Сравнительно небольшие «загогулины» гиппокампа входят в древнейшую область головного мозга – лимбическую систему, которую еще называют археокортекс — «древняя кора». Она управляет элементарными физиологическими процессами и вегетативными функциями.

Можно сказать, что лимбическая система – это то, что роднит наш мозг со всеми млекопитающими.

Гиппокамп еще древнее, но, несмотря на небольшой размер, это совсем не примитивное образование. И он только начал открывать свои тайны.

Многофункциональность гиппокампа

Еще в XVI веке итальянский анатом Джузеппе Аранци (Арантиус) обратил внимание на два небольших парных отдела мозга, похожих на морских коньков. Этому ученому мы обязаны не только понятием «гиппокамп». Арантиус предположил, что данный участок мозга отвечает за восприятие запахов, и вплоть до конца XIX физиологи его называли «обонятельным мозгом». Только в 1890 году знаменитый русский физиолог В. М. Бехтерев опубликовал результаты исследований, в которых доказывал связь гиппокампа с процессами запоминания и сохранения информации.

Управление памятью

Маленькие по сравнению со всем остальным мозгом «загогулины» гиппокампа управляют сложными процессами кратковременной памяти и перемещением обработанной информации в память долговременную.

То есть всеми нашими профессиональными знаниями и навыками, воспоминаниями детства, сохраненной информацией о значимых событиях жизни и лицах знакомых и близких людей мы обязаны гиппокампу.

Правда, как происходит процесс управления памятью, до сих пор остается тайной. Но само расположение гиппокампа таково, что он оказывается связан со всеми отделами головного мозга, куда и распределяет все, что нужно запомнить и сохранить.

В ведении этого отдела мозга находится эмоциональная память, то есть сохранение эмоций и чувств. Это, пожалуй, один из древнейших видов памяти, и он самый прочный. Мы можем забыть детали события, черты участвующих в нем людей, но вот память о пережитых чувствах сохраняется очень долго.

Как показали исследования, гиппокамп отвечает и за память на лица. Это тоже очень важный вид памяти, который в древности к тому же играл защитную функцию, ведь очень важно быстро отличить врага от друга.

Кроме этого, гиппокамп занимается своеобразной сортировкой информации, отсеивая незначимую или неважную, а нужную отправляя на длительное хранение в другие отделы мозга, которые отвечают за самые разные виды памяти.

Эта сортировка происходит преимущественно во сне. Думаю, вы слышали, что во время подготовки к экзамену, когда требуется запомнить большой объем информации, полезно спать днем. Это как раз связано с режимом работы гиппокампа, который обрабатывает и сортирует поступившую в мозг информацию, пока человек спит. Во время бодрствования у этого отдела мозга есть много других важных обязанностей. Например, ориентация в пространстве.

Функция пространственной ориентации

Человек постоянно находится в многообразных отношениях с окружающим миром. Эти отношения, как правило, включают различные двигательные операции и сложные действия, связанные с ориентацией в пространстве. Без способности к такой ориентации мы даже ложку ко рту не сможем поднести или на стул сесть. Управляет всем этим тоже гиппокамп. Даже наше трехмерное восприятие и функционирование в 3D-мире – это его же заслуга.

Все впечатления и ощущения, связанные с восприятием окружающего пространства,  гиппокамп сохраняет в памяти как важный опыт.

Пространственная память позволяет нам ориентироваться даже в совершенно незнакомой обстановке, соотносить размеры объектов, их сущность и расстояние до них. Например, способность ориентации на местности позволяет нам понимать, что яма на дороге опасна и ее надо обойти, даже если мы в первый раз идем по этой дороге и никогда не видели эту яму. Кстати, то, что мы можем распознавать и идентифицировать разные объекты, несмотря на наше пространственное положение и скорость движения, тоже заслуга гиппокампа. Так, стул мы воспринимаем одинаково, вне зависимости от того, сидим мы на нем, стоим рядом, лежим на полу или проходим мимо него.

Последние исследования показали, что гиппокамп не только управляет нейронами, отвечающими за восприятие пространства, но и хранит своеобразные нейронные карты, тех мест, где мы были. И у людей, профессия которых связана с необходимостью хорошей пространственной памяти, например, у таксистов, гиппокамп часто больших размеров, чем у тех, кому сохранение информации о местности не так важно.

Фабрика нейронов

Долгое время считалось, что основная масса нейронов – нервных клеток головного мозга – формируется в детстве, а у взрослого они могут только отмирать в результате нервных перегрузок и от старости. Думаю, фразу «нервные клетки не восстанавливаются» слышали все.

Оказалось, это совсем не так. Нейроны воспроизводятся, то есть «рождаются» в течение всей жизни человека, и при должной психической активности (когда человек мыслит, решает сложные задачи, занимается творчеством) они включаются в деятельность мозга. Правда, с возрастом скорость создания новых нервных клеток снижается, зато увеличивается срок жизни уже имеющихся.

Так вот, основной фабрикой по производству нейронов головного мозга тоже является гиппокамп. Ежедневно он «производит» порядка 700 нервных клеток. Этот процесс, названный нейрогенезом, открыт сравнительно недавно и пока мало изучен.

Есть предположение, что функции гиппокампа этим не ограничиваются. Его роль в работе головного мозга огромна, что доказывается и теми проблемами, которые возникают при нарушении функционирования этого сравнительно небольшого отдела нашего «центрального компьютера».

Последствия повреждений гиппокампа

Нарушения в деятельности человеческого мозга могут быть вызваны тремя группами причин:

  • травмами;
  • психическими заболеваниями;
  • нейродегенеративными процессами, вызванными приемом наркотических веществ и алкоголя или связанными со старением.

Почти все эти факторы так или иначе затрагивают и деятельность гиппокампа, что приводит к нарушению или утрате ряда важных психических функций.

Нарушение памяти

Большинство проблем с памятью возникает именно при повреждении гиппокампа или нарушении его деятельности. Речь здесь идет не о банальной забывчивости и рассеянности, а о серьезных патологиях. К ним относятся два основных вида частичной потери памяти:

  • Ретроградная амнезия – утрата памяти о событиях, предшествующих травме или заболеванию.
  • Антероградная амнезия – забывание того, что случилось уже после несчастного случая или наступления болезни.

В обоих случаях утрачивается только декларативная память, основанная на обобщении нашего опыта, узнавании событий, лиц и т.

д. Это сфера осознанных воспоминаний, которой и управляет гиппокамп. Как было уже сказано, этот отдел головного мозга связан с переводом информации из кратковременной памяти в долговременную, и повреждение гиппокампа приводит к нарушению этого процесса. В результате либо оказывается закрыт доступ к данным, хранящимся в долговременной памяти (ретроградная амнезия), либо становится невозможным долгосрочное хранение только что полученной информации – антероградная амнезия.

Психопатологии

Гиппокамп не только очень важная, но и уязвимая часть нашего мозга. При различных психических заболеваниях, вызванных генетическими патологиями, стрессами, употреблением психотропных средств или старением, он страдает в первую очередь.

Несмотря на недостаточную изученность функций гиппокампа, его связь с некоторыми психическими нарушениями установлена довольно точно:

  • Эпилепсия. Как показали исследования, патологии или деформации гиппокампа были выявлены у 75 % больных эпилепсией.
  • Болезнь Альцгеймера. Это заболевание, характерное для пожилых людей, связано с дисфункцией гиппокампа, который даже уменьшается в объемах. И симптомы болезни Альцгеймера указывают на ее связь с нарушением работы данного отдела мозга. Это ухудшение памяти и проблемы с ориентацией в пространстве, а при глубокой патологии – неспособность узнавать лица близких.
  • Синдром Корсакова, который может быть как алкогольным, так и безалкогольным, связанным, например, с опухолью мозга, травмой, сосудистыми нарушениями в старости и т. д. Для этого заболевания характерна неспособность сохранять в памяти события настоящего и дезориентация в пространстве, времени, происходящих событиях.

Одним из факторов нарушения функций гиппокампа является затяжной стресс, который приводит к быстрой и массовой гибели нейронов. Отвечающий за их воспроизводство гиппокамп просто не справляется с нагрузкой. К разрушению клеток этого отдела головного мозга также причастен гормон кортизол, который в больших количествах вырабатывается во время стресса для активизации деятельности организма, стимуляции мышечной и сосудистой системы и т. д. Главным побочным эффектом воздействия кортизола на головной мозг является нарушение работы гиппокампа, что приводит к ухудшению памяти, рассеянности, дезориентации в пространстве.

Поэтому так важно избегать длительных стрессовых состояний. Но если уйти в лес и жить в уединенной избушке на берегу озера – это не ваш вариант, то стоит научиться управлять своими эмоциями и сохранять спокойствие.

10 поразительных фактов о работе головного мозга

Источник изображения

Мозг — это самый загадочный и таинственный орган человека. Парадоксально, но наши представления о его работе и то, как она самом деле происходит — вещи диаметрально противоположные. Следующие эксперименты и гипотезы приоткроют завесу над некоторыми тайнами функционирования этого «оплота мышления», взять который ученым не удалось по сей день.

1. Усталость — пик креативности

Работа биологических часов — внутренней системы организма, определяющей ритм его жизнедеятельности — имеет непосредственное влияние на повседневную жизнь человека и его продуктивность в целом. Если вы «жаворонок», то разумней всего выполнять сложную аналитическую работу, требующую серьезных умственных затрат, утром или до полудня. Для полуночников, иными словами — «сов» — это вторая половина дня, плавно переходящая в ночь.

С другой стороны, за более креативную работу, требующую активации правого полушария, ученые советуют приниматься, когда организм чувствует физическую и умственную истощенность, а мозгу уже просто не под силу разобраться в доказательстве тернарной проблемы Гольдбаха. Звучит безумно, но если копнуть немного глубже, то рациональное зерно в данной гипотезе найти все же можно. Так или иначе, это объясняет, почему моменты типа «Эврика!» происходят во время езды в общественном транспорте после длинного рабочего дня или, если верить истории, в ванной. 🙂

При недостатке сил и энергии фильтровать поток информации, анализировать статистические данные, находить и, что самое главное, запоминать причинно-следственные связи крайне тяжело. Когда речь заходит о творчестве, то перечисленные негативные моменты приобретают положительный окрас, так как этот вид умственной работы предполагает генерирование новых идей и нерациональное мышление. Другими словами, уставшая нервная система при работе над творческими проектами более эффективна.

В одной из статей научно-популярного американского журнала Scientific American говорится о том, почему отвлечение играет важную роль в процессе креативного мышления:

«Способность к отвлечению очень часто является источником нестандартных решений и оригинальных мыслей. В эти моменты человек менее сконцентрирован и может воспринимать более широкий спектр информации. Такая «открытость» позволяет оценивать альтернативные варианты решения проблем под новым углом, способствует принятию и созданию совершенно новых свежих идей».

2. Влияние стресса на размеры мозга

Стресс — это один из наиболее сильных факторов, влияющих на нормальное функционирование головного мозга человека. Недавно ученые Йельского университета (Yale University) доказали, что частые переживания и депрессии в буквальном смысле уменьшают размеры центральной части нервной системы организма.

Исследуя мозг умерших людей, перед смертью страдавших от депрессии, ученые установили, что самая большая деформация наблюдается в префронтальной коре, отвечающей за наиболее сложные когнитивные и поведенческие функции. Кроме того, длительное нервное напряжение оказывает негативное воздействие на гиппокамп — часть лимбической системы головного мозга, участвующей в процессах формирования эмоций и консолидации памяти.

3. Псевдопараллельная работа мозга

Многие уверенны в том, что одновременное выполнение нескольких дел повышает продуктивность работы. Как выяснилось, смотреть фильм, жевать бутерброд и отвечать при этом на сообщение в Facebook практически невозможно. Навык, практикуемый нами изо дня в день, носит менее красноречивое название — переключение контекста (context switch). Иными словами, человек просто прекращает работу над одной задачей, быстро переключаясь на вторую, третью и т. д.

Джон Медина (John Medina) в своей книге «Правила мозга» (Brain Rules) объяснил, насколько вредной может быть многозадачность:

«Результаты многих исследований показывают, что параллельная работа над несколькими заданиями повышает частоту возникновения ошибок на 50% и увеличивает длительность работы в два раза.

Пытаясь сделать два действия одновременно, мозг “разделяет и властвует” — каждое полушарие работает над решением одной единственной проблемы. В результате скорость обработки информации уменьшается ровно в два раза».

Головной мозг человека не может синхронизировать процессы принятия решений в отношении двух отдельно взятых проблем. Пытаясь сделать два действия в одно и то же время, мы всего лишь истощаем свои когнитивные способности, переключаясь с одной проблемы на другую.

В случае, если человек сконцентрирован на чем-то одном, основную роль играет префронтальная кора, контролирующая все возбуждающие и угнетающие импульсы.

«Передняя (Anterior part) префронтальная кора головного мозга отвечает за формирование целей и намерений. К примеру, желание “Я хочу съесть тот кусочек торта” в виде возбуждающего импульса проходит по нейронной сети, достигает задней префронтальной коры, и вы уже наслаждаетесь лакомством».

4. Короткий сон повышает умственную активность

Прекрасно известно, какое влияние оказывает здоровый сон. Вопрос в том, какое воздействие имеет дремота? Как выяснилось, короткие «отключки» на протяжении дня не менее положительно сказываются на умственной деятельности.

Улучшение памяти

После окончания эксперимента по запоминанию 40 иллюстрированных карточек одна группа участников на протяжении 40 минут спала, тогда как вторая бодрствовала. В результате последующего тестирования выяснилось, что участники, которым выпал шанс немного вздремнуть, запомнили карточки гораздо лучше:

«В это сложно поверить, но выспавшейся группе удалось возобновить в памяти 85% карточек, тогда как остальные вспомнили всего 55%».

Очевидно, что короткий сон помогает нашему центральному компьютеру «кристаллизировать» воспоминания:

«Исследование показывает, что едва сформировавшиеся в гиппокампе воспоминания очень хрупки и могут быть легко стерты из памяти, особенно если потребуется место для новой информации. Короткий сон, как оказалось, “проталкивает” недавно усвоенные данные к новой коре (неокортекс), месту длительного хранения воспоминаний, защищая их таким образом от уничтожения».

Улучшение процесса обучения

В процессе исследования, проведенного профессорами Калифорнийского университета (The University of California), перед группой студентов было поставлено довольно сложное задание, требующее изучения большого количества новой информации. Через два часа после начала эксперимента половина волонтеров, точно так же, как и в случае с карточками, на протяжении короткого периода времени спала.

В конце дня выспавшиеся участники не только качественнее выполнили задание и лучше усвоили материал, но их «вечерняя» продуктивность значительно превышала показатели, полученные перед началом исследования.

Что происходит во время сна?

Несколько недавних исследований показали, что во время сна активность правого полушария значительно повышается, тогда как левое ведет себя предельно тихо. 🙂

Такое поведение ему совершенно не свойственно, так как у 95% населения планеты левое полушарие является доминирующим. Андрей Медведев, автор данного исследования, сделал весьма забавное сравнение:

«Пока мы спим, правое полушарие беспрестанно хлопочет по дому».

5. Зрение — главный «козырь» сенсорной системы

Несмотря на то, что зрение является одной из пяти составляющих сенсорной системы, способность воспринимать электромагнитное излучение видимого спектра по своей важности значительно превалирует над остальными:

«Через три дня после изучения какого-либо текстового материала, вы вспомните всего 10% прочитанного. Несколько релевантных изображений способны увеличить эту цифру на 55%.

Иллюстрации гораздо эффективнее текста отчасти потому, что чтение само по собе не приносит ожидаемых результатов. Наш мозг воспринимает слова в виде крошечных изображений. Чтобы вникнуть в смысл одного предложения, необходимо больше времени и энергии, нежели для того, чтобы рассмотреть красочную картинку».

На самом деле то, что мы так сильно полагаемся на свою зрительную систему, имеет несколько негативных моментов. Вот один из них:

«Наш мозг вынужден постоянно строить догадки, так как он не имеет никакого понятия, где конкретно находятся видимые предметы. Человек живет в трехмерном пространстве, тогда как свет на сетчатку его глаза падает в двумерной плоскости. Таким образом, мы додумываем все, что не можем увидеть».

На картинке, представленной ниже, показано, какая часть головного мозга отвечает за обработку визуальной информации, и ее взаимодействие с другими областями мозга.

6. Влияние типа личности

Принято считать, что экстравертность и интровертность каким-то образом связаны с тем, насколько открыт или застенчив человек. На самом деле все опять-таки зависит от работы мозга. 🙂

Умственная активность экстравертов значительно повышается, когда «выгорает» рискованная сделка или удается провернуть какую-то авантюру. С одной стороны, это просто генетическая предрасположенность общительных и импульсивных людей, а с другой — разные уровни нейромедиатора дофамина в мозгу разных типов личности.

«Когда стало известно, что рискованная сделка оказалась удачной, повышенная активность прослеживалась в двух областях мозга экстравертов: миндалевидном теле (лат. corpus amygdaloidum) и прилежащем ядре (лат. nucleus accumbens)».

Прилежащее ядро является частью дофаминергической системы, вызывающей чувство удовольствия и влияющей на процессы мотивации и обучения. Дофамин, вырабатываемый в мозгу экстравертов, подталкивает их к совершению безумных поступков и дает возможность полностью насладиться происходящими вокруг событиями. Миндалевидное тело, в свою очередь, играет ключевую роль в формировании эмоций и отвечает за обработку возбуждающих и угнетающих импульсов.

Другие исследования продемонстрировали, что самая большая разница между интровертами и экстравертами заключается в процессах обработки различных стимулов, поступающих в мозг. У экстравертов этот путь гораздо короче — возбуждающие факторы двигаются через области, отвечающие за обработку сенсорной информации. У интровертов траектория движения стимулов гораздо сложнее — они проходят через области, связанные с процессами запоминания, планирования и принятия решений.

7. Эффект «полного провала»

Профессор социальной психологии Стэнфордского университета (Stanford University) Эллиот Аронсон (Elliot Aronson) обосновал существование так называемого эффекта «полного провала» (Pratfall Effect). Его суть состоит в том, что допуская ошибки, мы больше нравимся людям.

«Тот, кто никогда не ошибается, менее симпатичен окружающим, нежели тот, кто временами делает глупости. Совершенство создает дистанцию и невидимую ауру недосягаемости. Именно поэтому в выигрыше всегда тот, у кого есть хоть какие-то изъяны.

Эллиот Аронсон провел замечательный эксперимент, подтверждающий его гипотезу. Группе участников было предложено прослушать две аудиозаписи, сделанные во время собеседований. На одной из них было слышно, как человек опрокидывает чашку кофе. Когда участников опросили, какой из претендентов им симпатизировал больше, все проголосовали за неуклюжего соискателя».

8. Медитация — подзарядка для мозга

Медитация полезна не только для улучшения внимания и сохранения спокойствия в течении дня. Различные психофизические упражнения имеют множество положительных эффектов.

Спокойствие

Чем чаще мы медитируем, тем спокойнее становимся. Это утверждение несколько спорное, но довольно интересное. Как выяснилось, причиной тому является разрушение нервных окончаний мозга. Вот как выглядит префронтальная кора до и после 20-минутной медитации:

Во время медитации нервные связи значительно ослабевают. При этом связи между областями мозга, отвечающими за рассуждения и принятия решений, телесными ощущениями и центром страха, наоборот, укрепляются. Поэтому, переживая стрессовые ситуации, мы можем более рационально их оценивать.

Креативность

Исследователи Лейденского университета в Нидерландах, изучая целенаправленную медитацию и медитацию ясного ума, обнаружили, что у участников эксперимента, практикующих стиль целенаправленной медитации, не наблюдалось особых изменений в областях мозга, регулирующих процесс творческого мышления. Те, кто избрал для себя медитацию ясного ума, намного превзошли остальных участников по результатам последующего тестирования.

Память

Кэтрин Кэрр (Catherine Kerr), доктор философских наук, сотрудник Центра Биомедицинского Сканирования MGH (Martinos Center for Biomedical Imaging) и Исследовательского центра Ошера Гарвардской Медицинской Школы, утверждает, что медитация повышает многие умственные способности, в частности — быстрое запоминание материала. Способность абсолютно абстрагироваться от всех отвлекающих факторов позволяет людям, практикующим медитацию, предельно концентрироваться на выполняемой задаче.

9. Упражнения — реорганизация и воспитание силы воли

Конечно, физические упражнения очень полезны для нашего тела, но как насчет работы мозга? Между тренировками и умственной активностью существует точно такая же связь, как между тренировками и положительными эмоциями.

«Регулярная физическая нагрузка может стать причиной значительного улучшения когнитивных способностей человека. В результате проведенного тестирования выяснилось, что люди, активно занимающиеся спортом, в отличие от домоседов, имеют хорошую память, быстро принимают правильные решения, без особого труда концентрируют внимание на выполнении поставленной задачи и умеют выделять причинно-следственные связи».

Если вы только приступили к занятиям, ваш мозг воспримет это событие не иначе как стресс. Учащенное сердцебиение, одышка, головокружение, судороги, мышечная боль и т. д. — все эти симптомы возникают не только в тренажерных залах, но и в более экстремальных жизненных ситуациях. Если ранее вы ощущали что-то подобное, эти неприятные воспоминания обязательно всплывут в памяти.

Чтобы защититься от стресса, во время тренировки мозг вырабатывает белок BDNF (нейротрофический фактор мозга). Вот почему после занятий спортом мы чувствуем себя непринужденными и в конечном итоге даже счастливыми. Кроме того — как защитная реакция в ответ на стресс — увеличивается выработка эндорфинов:

«Эндорфины минимизируют ощущение дискомфорта во время занятий, блокируют боль и способствуют возникновению чувства эйфории».

10. Новая информация замедляет ход времени

Вы когда-нибудь мечтали о том, чтобы время летело не так быстро? Наверное, неоднократно. Зная, каким образом человек воспринимает время, можно искусственно замедлять его ход.

Поглощая огромное количество информации, поступающей от разных органов чувств, наш мозг структурирует данные таким образом, чтобы мы могли беспрепятственно воспользоваться ими в будущем.

«Так как информация, воспринимаемая мозгом, совершенно неупорядоченная, она должна быть реорганизована и усвоена в понятной для нас форме. Несмотря на то, что процесс обработки данных занимает миллисекунды, новая информация усваивается мозгом немного дольше. Таким образом, человеку кажется, что время тянется вечность».

Более странно то, что за восприятие времени отвечают практически все области нервной системы.

Когда человек получает много информации, мозгу необходимо определенное время на ее обработку, и чем дольше длится этот процесс, тем больше замедляется ход времени.

Когда же мы в который раз работаем над до боли знакомым материалом, все происходит с точностью до наоборот — время пролетает практически незаметно, так как особых умственных усилий прикладывать не приходится.

Высоких вам конверсий!

По материалам blog.bufferapp 

01-10-2013

Какая часть мозга отвечает за речь? Строение и функции головного мозга

Головной мозг человека до сих пор остается загадкой для всего человечества. Уникальный орган по своему строению и своей роли в жизни человека отвечает за все основные возможности: дышать, двигаться, думать, слышать, видеть и, наконец, говорить. Несмотря на огромное количество вопросов, некоторые тайны ученым удалось разгадать, в том числе определить, какая часть мозга отвечает за речь.

Строение головного мозга

Всем известно, что если головной мозг перестает функционировать, то человек не реагирует ни на какие внешние факторы, не проявляет никакой активности, превращается в «овощ». По своему строению мозг симметричен и состоит из правого и левого полушарий.

Споры ученых не утихают, однако некоторые факты доказаны и утверждены.

Важные факты:

  1. Мозг человека состоит из 25 миллиардов нейронов.
  2. Мозг взрослого человека составляет около 2 % от массы тела.
  3. Орган состоит из трех оболочек: твердая, мягкая, паутинная. Оболочки выполняют главную – защитную функцию.

Принято считать, что левое полушарие отвечает за все мыслительные процессы, а правое за восприятие внешнего мира. Грубо говоря, левое – логическое, а правое – творческое полушарие.

С точки зрения анатомии мозг состоит из следующих частей:

  1. Продолговатый мозг. Отвечает за вегетативные функции.
  2. Средний мозг. Контролирует рефлексы на внешние раздражители.
  3. Задний мозг. Отвечает за координацию движений.
  4. Промежуточный мозг. Включает в себя центры чувств (голод, жажда, насыщение, регуляция сна).
  5. Передний мозг. Самая большая часть, которая покрыта бороздами (извилинами). Обеспечивает более совершенную работу мозга.

Функции головного мозга

Перечислить все функции практически невозможно. Зоны головного мозга отвечают за все действия человека в повседневной жизни.

Основные функции:

  1. Разумная функция, или мышление человека.
  2. Обработка внешних сигналов, которые координирует вкус, зрение, слух, обоняние.
  3. Управление психологическим состоянием, эмоциями.
  4. Регуляция основных движений, рефлекторная функция.

В обычной жизни человек не задумывается, почему поступает так или иначе. Ответственность за все действия несет головной мозг.

Отделы

Если углубляться в тему, чтобы определить, какая часть мозга отвечает за речь, необходимо знать, из каких основных отделов состоит этот орган человека. Их принято называть долями. Строение и функции больших полушарий головного мозга играют важнейшую роль в жизни каждого из нас.

В человеческом мозге выделяют следующие доли:

  1. Лобная.
  2. Височная.
  3. Теменная.
  4. Затылочная.

Отдельно от строения и функций больших полушарий головного мозга выделяют мозжечок, который отвечает за координацию тела в пространстве, и гипофиз, который регулирует выработку гормонов.

Не во всех случаях ученые едины во мнении, какая часть за что отвечает. Это говорит в первую очередь о большом недостатке знаний о зонах головного мозга и о несовершенстве современной медицины.

Лобная доля

Возвращаясь к вопросу, какая часть мозга отвечает за речь, необходимо остановиться на изучении лобной доли. В первую очередь существует утверждение, что за способность говорить несет ответственность левое полушарие головного мозга. Здесь находятся речевые центры.

Лобная часть больших полушарий мозга несет огромное значение в повседневной жизни человека. Она отвечает за:

  1. Характер мышления.
  2. Процесс мочеиспускания.
  3. Поддержание тела в вертикальном состоянии.
  4. Мотивацию и контроль поведения.
  5. Речь и почерк.

Лобная доля берет на себя ответственность за смысловое построение речи человека.

Височная доля

Роль этой части головного мозга не столь обширна, но гораздо более узконаправлена. Височные доли находятся как в левом, так и в правом полушариях головного мозга, что откладывает отпечаток на их основные функции.

Левая височная доля отвечает за:

  1. Восприятие звуковой информации.
  2. Кратковременную память.
  3. Подбор слов во время разговора (роль в формировании речи).
  4. Синтез зрительной и слуховой информации.
  5. Взаимодействие музыки и эмоций.

Права височная доля несет ответственность за:

  1. Распознавание мимики.
  2. Восприятие ритма и музыкального тона.
  3. Восприятие интонации речи.
  4. Фиксация зрительных фактов.

Данная часть мозга позволяет человеку понять по интонации речи собеседника о его эмоциях и отношении к обсуждаемому вопросу.

Речевые центры головного мозга

Различные нарушения речи человека мотивировали ученых изучить, как влияет на данный факт работа головного мозга. Было определено, что существует несколько речевых центров, которые расположены преимущественно в левом полушарии. В совместном взаимодействии они поддерживают речь человека на должном уровне. Если хоть какая-то часть травмирована, то это непременно отразится на качестве и способности говорить.

Выделяют две основные речевые зоны мозга:

  1. Моторная зона.
  2. Сенсорная зона.
  3. Ассоциативный центр.

Каждая из них отвечает за четко определенные функции.

Функции

Моторная зона расположена в передней части лобной доли левого полушария, рядом с двигательным центром, который отвечает за мышечную деятельность. Основная функция моторной зоны (центр Брока):

  • Несет ответственность за двигательную способность языка. В случае каких-либо нарушений в этом отделе человек продолжает понимать речь, но не в состоянии ответить.

Сенсорная зона находится в задней части височной доли головного мозга. Главной задачей этого центра (центр Вернике) является:

  • Восприятие и хранение устной речи, как собственной, так и окружающих. Если в данной области происходят нарушения, то человек перестает воспринимать речь окружающих, хотя сам при этом сохраняет способность говорить, хоть и с дефектами.

Если по каким-то причина приходится удалить сенсорную речевую зону, то человек полностью теряет способность воспринимать и производить речь.

Ассоциативный речевой центр

Данная часть головного мозга развивается у человека не с рождения, а только к 2 годам жизни, когда ребенок начинает пытаться произносить осознанные фразы. Данная зона располагается в теменной части коры головного мозга и играет также одну из важнейших ролей в формировании речи человека.

Нарушения

Зная, какая часть мозга отвечает за речь, важно понимать, что мозг уязвим. Любые нарушения и повреждения не пройдут для человека бесследно. Врожденную способность к речи в человеке необходимо воспитывать и развивать с раннего детства.

Причины, которые провоцируют нарушения:

  1. Тяжелая беременность.
  2. Генетическая предрасположенность.
  3. Медленное развитие психики.
  4. Поражение слухового органа.
  5. Тяжелые заболевания и иные патологии.

Недостаточное внимание со стороны родителей, также непременно отражается на речевых способностях ребенка. В дальнейшем, чтобы установить причины нарушений, необходимы консультации как логопеда, так и психолога. Принято использовать классификацию О. Бадалян для описания и определения нарушений у детей.

Во взрослом возрасте самым распространенным фактором, нарушающим речь нормального человека, признан инсульт. Нередко после удара человек не в состоянии грамотно и полностью сформулировать фразу, мысли путаются либо не слушается язык. Это говорит о дизартрии. Такое поражение чаще всего легко поддается лечению.

Если возникает состояние афазии, то это влечет за собой системное поражение всего головного мозга. На фоне такой патологии страдает также и психологическое состояние пациента.

Вне зависимости от причин, которые повлекли за собой нарушение речевых способностей, человеку необходимо незамедлительно обратиться к врачу. Только специалист способен верно определить основную патологию и назначить лечение.

ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА | Энциклопедия Кругосвет

Содержание статьи

ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА, орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Данная статья посвящена мозгу человека, более сложному и высокоорганизованному, чем мозг животных. Однако существует значительное сходство в устройстве мозга человека и других млекопитающих, как, впрочем, и большинства видов позвоночных.

Центральная нервная система (ЦНС) состоит из головного и спинного мозга. Она связана с различными частями тела периферическими нервами – двигательными и чувствительными. См. также НЕРВНАЯ СИСТЕМА.

Головной мозг – симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он – ок. 1,5 кг. При внешнем осмотре мозга внимание прежде всего привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов.

Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество – нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам.

Головной и спинной мозг защищены костными футлярами – черепом и позвоночником. Между веществом мозга и костными стенками располагаются три оболочки: наружная – твердая мозговая оболочка, внутренняя – мягкая, а между ними – тонкая паутинная оболочка. Пространство между оболочками заполнено спинномозговой (цереброспинальной) жидкостью, которая по составу сходна с плазмой крови, вырабатывается во внутримозговых полостях (желудочках мозга) и циркулирует в головном и спинном мозгу, снабжая его питательными веществами и другими необходимыми для жизнедеятельности факторами.

Кровоснабжение головного мозга обеспечивают в первую очередь сонные артерии; у основания мозга они разделяются на крупные ветви, идущие к различным его отделам. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответственно кислорода. Энергетические запасы самого мозга крайне невелики, так что он чрезвычайно зависим от снабжения кислородом. Существуют защитные механизмы, способные поддержать мозговой кровоток в случае кровотечения или травмы. Особенностью мозгового кровообращения является также наличие т.н. гематоэнцефалического барьера. Он состоит из нескольких мембран, ограничивающих проницаемость сосудистых стенок и поступление многих соединений из крови в вещество мозга; таким образом, этот барьер выполняет защитные функции. Через него не проникают, например, многие лекарственные вещества.

КЛЕТКИ МОЗГА

Клетки ЦНС называются нейронами; их функция – обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции.

Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков – дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела (см. также КЛЕТКА).

Нервные импульсы.

Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель – синапс; передача импульсов через синапс опосредована химическими веществами – нейромедиаторами.

Нервный импульс обычно зарождается в дендритах – тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов.

В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов (см. ниже Нейрохимия мозга).

Нейромедиатор, выделившийся из пресинаптической мембраны аксона, связывается с рецепторами на дендритах постсинаптического нейрона. Мозг использует разнообразные нейромедиаторы, каждый из которых связывается со своим особым рецептором.

С рецепторами на дендритах соединены каналы в полупроницаемой постсинаптической мембране, которые контролируют движение ионов через мембрану. В покое нейрон обладает электрическим потенциалом в 70 милливольт (потенциал покоя), при этом внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Хотя существуют различные медиаторы, все они оказывают на постсинаптический нейрон либо возбуждающее, либо тормозное действие. Возбуждающее влияние реализуется через усиление потока определенных ионов, главным образом натрия и калия, через мембрану. В результате отрицательный заряд внутренней поверхности уменьшается – происходит деполяризация. Тормозное влияние осуществляется в основном через изменение потока калия и хлоридов, в результате отрицательный заряд внутренней поверхности становится больше, чем в покое, и происходит гиперполяризация.

Функция нейрона состоит в интеграции всех воздействий, воспринимаемых через синапсы на его теле и дендритах. Поскольку эти влияния могут быть возбуждающими или тормозными и не совпадать по времени, нейрон должен исчислять общий эффект синаптической активности как функцию времени. Если возбуждающее действие преобладает над тормозным и деполяризация мембраны превышает пороговую величину, происходит активация определенной части мембраны нейрона – в области основания его аксона (аксонного бугорка). Здесь в результате открытия каналов для ионов натрия и калия возникает потенциал действия (нервный импульс).

Этот потенциал распространяется далее по аксону к его окончанию со скоростью от 0,1 м/с до 100 м/с (чем толще аксон, тем выше скорость проведения). Когда потенциал действия достигает окончания аксона, активируется еще один тип ионных каналов, зависящий от разности потенциалов, – кальциевые каналы. По ним кальций входит внутрь аксона, что приводит к мобилизации пузырьков с нейромедиатором, которые приближаются к пресинаптической мембране, сливаются с ней и высвобождают нейромедиатор в синапс.

Миелин и глиальные клетки.

Многие аксоны покрыты миелиновой оболочкой, которая образована многократно закрученной мембраной глиальных клеток. Миелин состоит преимущественно из липидов, что и придает характерный вид белому веществу головного и спинного мозга. Благодаря миелиновой оболочке скорость проведения потенциала действия по аксону увеличивается, так как ионы могут перемещаться через мембрану аксона лишь в местах, не покрытых миелином, – т.н. перехватах Ранвье. Между перехватами импульсы проводятся по миелиновой оболочке как по электрическому кабелю. Поскольку открытие канала и прохождение по нему ионов занимает какое-то время, устранение постоянного открывания каналов и ограничение их сферы действия небольшими зонами мембраны, не покрытыми миелином, ускоряет проведение импульсов по аксону примерно в 10 раз.

Только часть глиальных клеток участвует в формировании миелиновой оболочки нервов (шванновские клетки) или нервных трактов (олигодендроциты). Гораздо более многочисленные глиальные клетки (астроциты, микроглиоциты) выполняют иные функции: образуют несущий каркас нервной ткани, обеспечивают ее метаболические потребности и восстановление после травм и инфекций.

КАК РАБОТАЕТ МОЗГ

Рассмотрим простой пример. Что происходит, когда мы берем в руку карандаш, лежащий на столе? Свет, отраженный от карандаша, фокусируется в глазу хрусталиком и направляется на сетчатку, где возникает изображение карандаша; оно воспринимается соответствующими клетками, от которых сигнал идет в основные чувствительные передающие ядра головного мозга, расположенные в таламусе (зрительном бугре), преимущественно в той его части, которую называют латеральным коленчатым телом. Там активируются многочисленные нейроны, которые реагируют на распределение света и темноты. Аксоны нейронов латерального коленчатого тела идут к первичной зрительной коре, расположенной в затылочной доле больших полушарий. Импульсы, пришедшие из таламуса в эту часть коры, преобразуются в ней в сложную последовательность разрядов корковых нейронов, одни из которых реагируют на границу между карандашом и столом, другие – на углы в изображении карандаша и т.д. Из первичной зрительной коры информация по аксонам поступает в ассоциативную зрительную кору, где происходит распознавание образов, в данном случае карандаша. Распознавание в этой части коры основано на предварительно накопленных знаниях о внешних очертаниях предметов.

Планирование движения (т.е. взятия карандаша) происходит, вероятно, в коре лобных долей больших полушарий. В этой же области коры расположены двигательные нейроны, которые отдают команды мышцам руки и пальцев. Приближение руки к карандашу контролируется зрительной системой и интерорецепторами, воспринимающими положение мышц и суставов, информация от которых поступает в ЦНС. Когда мы берем карандаш в руку, рецепторы в кончиках пальцев, воспринимающие давление, сообщают, хорошо ли пальцы обхватили карандаш и каким должно быть усилие, чтобы его удержать. Если мы захотим написать карандашом свое имя, потребуется активация другой хранящейся в мозге информации, обеспечивающей это более сложное движение, а зрительный контроль будет способствовать повышению его точности.

На приведенном примере видно, что выполнение довольно простого действия вовлекает обширные области мозга, простирающиеся от коры до подкорковых отделов. При более сложных формах поведения, связанных с речью или мышлением, активируются другие нейронные цепи, охватывающие еще более обширные области мозга.

ОСНОВНЫЕ ЧАСТИ ГОЛОВНОГО МОЗГА

Головной мозг можно условно разделить на три основные части: передний мозг, ствол мозга и мозжечок. В переднем мозгу выделяют большие полушария, таламус, гипоталамус и гипофиз (одну из важнейших нейроэндокринных желез). Ствол мозга состоит из продолговатого мозга, моста (варолиева моста) и среднего мозга.

Большие полушария

– самая большая часть мозга, составляющая у взрослых примерно 70% его веса. В норме полушария симметричны. Они соединены между собой массивным пучком аксонов (мозолистым телом), обеспечивающим обмен информацией.

Каждое полушарие состоит из четырех долей: лобной, теменной, височной и затылочной. В коре лобных долей содержатся центры, регулирующие двигательную активность, а также, вероятно, центры планирования и предвидения. В коре теменных долей, расположенных позади лобных, находятся зоны телесных ощущений, в том числе осязания и суставно-мышечного чувства. Сбоку к теменной доле примыкает височная, в которой расположены первичная слуховая кора, а также центры речи и других высших функций. Задние отделы мозга занимает затылочная доля, расположенная над мозжечком; ее кора содержит зоны зрительных ощущений.

Области коры, непосредственно не связанные с регуляцией движений или анализом сенсорной информации, именуются ассоциативной корой. В этих специализированных зонах образуются ассоциативные связи между различными областями и отделами мозга и интегрируется поступающая от них информация. Ассоциативная кора обеспечивает такие сложные функции, как научение, память, речь и мышление.

Подкорковые структуры.

Ниже коры залегает ряд важных мозговых структур, или ядер, представляющих собой скопление нейронов. К их числу относятся таламус, базальные ганглии и гипоталамус. Таламус – это основное сенсорное передающее ядро; он получает информацию от органов чувств и, в свою очередь, переадресует ее соответствующим отделам сенсорной коры. В нем имеются также неспецифические зоны, которые связаны практически со всей корой и, вероятно, обеспечивают процессы ее активации и поддержания бодрствования и внимания. Базальные ганглии – это совокупность ядер (т.н. скорлупа, бледный шар и хвостатое ядро), которые участвуют в регуляции координированных движений (запускают и прекращают их).

Гипоталамус – маленькая область в основании мозга, лежащая под таламусом. Богато снабжаемый кровью, гипоталамус – важный центр, контролирующий гомеостатические функции организма. Он вырабатывает вещества, регулирующие синтез и высвобождение гормонов гипофиза (см. также ГИПОФИЗ). В гипоталамусе расположены многие ядра, выполняющие специфические функции, такие, как регуляция водного обмена, распределения запасаемого жира, температуры тела, полового поведения, сна и бодрствования.

Ствол мозга

расположен у основания черепа. Он соединяет спинной мозг с передним мозгом и состоит из продолговатого мозга, моста, среднего и промежуточного мозга.

Через средний и промежуточный мозг, как и через весь ствол, проходят двигательные пути, идущие к спинному мозгу, а также некоторые чувствительные пути от спинного мозга к вышележащим отделам головного мозга. Ниже среднего мозга расположен мост, связанный нервными волокнами с мозжечком. Самая нижняя часть ствола – продолговатый мозг – непосредственно переходит в спинной. В продолговатом мозгу расположены центры, регулирующие деятельность сердца и дыхание в зависимости от внешних обстоятельств, а также контролирующие кровяное давление, перистальтику желудка и кишечника.

На уровне ствола проводящие пути, связывающие каждое из больших полушарий с мозжечком, перекрещиваются. Поэтому каждое из полушарий управляет противоположной стороной тела и связано с противоположным полушарием мозжечка.

Мозжечок

расположен под затылочными долями больших полушарий. Через проводящие пути моста он связан с вышележащими отделами мозга. Мозжечок осуществляет регуляцию тонких автоматических движений, координируя активность различных мышечных групп при выполнении стереотипных поведенческих актов; он также постоянно контролирует положение головы, туловища и конечностей, т.е. участвует в поддержании равновесия. Согласно последним данным, мозжечок играет весьма существенную роль в формировании двигательных навыков, способствуя запоминанию последовательности движений.

Другие системы.

Лимбическая система – широкая сеть связанных между собой областей мозга, которые регулируют эмоциональные состояния, а также обеспечивают научение и память. К ядрам, образующим лимбическую систему, относятся миндалевидные тела и гиппокамп (входящие в состав височной доли), а также гипоталамус и ядра т.н. прозрачной перегородки (расположенные в подкорковых отделах мозга).

Ретикулярная формация – сеть нейронов, протянувшаяся через весь ствол к таламусу и далее связанная с обширными областями коры. Она участвует в регуляции сна и бодрствования, поддерживает активное состояние коры и способствует фокусированию внимания на определенных объектах.

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ МОЗГА

С помощью электродов, размещенных на поверхности головы или введенных в вещество мозга, можно зафиксировать электрическую активность мозга, обусловленную разрядами его клеток. Запись электрической активности мозга с помощью электродов на поверхности головы называется электроэнцефалограммой (ЭЭГ). Она не позволяет записать разряд отдельного нейрона. Только в результате синхронизированной активности тысяч или миллионов нейронов появляются заметные колебания (волны) на записываемой кривой.

При постоянной регистрации на ЭЭГ выявляются циклические изменения, отражающие общий уровень активности индивида. В состоянии активного бодрствования ЭЭГ фиксирует низкоамплитудные неритмичные бета-волны. В состоянии расслабленного бодрствования с закрытыми глазами преобладают альфа-волны частотой 7–12 циклов в секунду. О наступлении сна свидетельствует появление высокоамплитудных медленных волн (дельта-волн). В периоды сна со сновидениями на ЭЭГ вновь появляются бета-волны, и на основании ЭЭГ может создаться ложное впечатление, что человек бодрствует (отсюда термин «парадоксальный сон»). Сновидения часто сопровождаются быстрыми движениями глаз (при закрытых веках). Поэтому сон со сновидениями называют также сном с быстрыми движениями глаз (см. также СОН). ЭЭГ позволяет диагностировать некоторые заболевания мозга, в частности эпилепсию (см. ЭПИЛЕПСИЯ).

Если регистрировать электрическую активность мозга во время действия определенного стимула (зрительного, слухового или тактильного), то можно выявить т.н. вызванные потенциалы – синхронные разряды определенной группы нейронов, возникающие в ответ на специфический внешний стимул. Исследование вызванных потенциалов позволило уточнить локализацию мозговых функций, в частности связать функцию речи с определенными зонами височной и лобной долей. Это исследование помогает также оценить состояние сенсорных систем у больных с нарушением чувствительности.

НЕЙРОХИМИЯ МОЗГА

К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, гамма-аминомасляная кислота (ГАМК), эндорфины и энкефалины. Помимо этих хорошо известных веществ, в мозге, вероятно, функционирует большое количество других, пока не изученных. Некоторые нейромедиаторы действуют только в определенных областях мозга. Так, эндорфины и энкефалины обнаружены лишь в путях, проводящих болевые импульсы. Другие медиаторы, такие, как глутамат или ГАМК, более широко распространены.

Действие нейромедиаторов.

Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго «посредника», например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ – пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану.

Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины – небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры. Это семейство нейромедиаторов подавляет субъективное восприятие боли.

Психоактивные средства

– вещества, способные специфически связываться с определенными рецепторами в мозгу и вызывать изменение поведения. Выявлено несколько механизмов их действия. Одни влияют на синтез нейромедиаторов, другие – на их накопление и высвобождение из синаптических пузырьков (например, амфетамин вызывает быстрое высвобождение норадреналина). Третий механизм состоит в связывании с рецепторами и имитации действия естественного нейромедиатора, например эффект ЛСД (диэтиламида лизергиновой кислоты) объясняют его способностью связываться с серотониновыми рецепторами. Четвертый тип действия препаратов – блокада рецепторов, т.е. антагонизм с нейромедиаторами. Такие широко используемые антипсихотические средства, как фенотиазины (например, хлорпромазин, или аминазин), блокируют дофаминовые рецепторы и тем самым снижают эффект дофамина на постсинаптические нейроны. Наконец, последний из распространенных механизмов действия – торможение инактивации нейромедиаторов (многие пестициды препятствуют инактивации ацетилхолина).

Давно известно, что морфин (очищенный продукт опийного мака) обладает не только выраженным обезболивающим (анальгетическим) действием, но и свойством вызывать эйфорию. Именно поэтому его и используют как наркотик. Действие морфина связано с его способностью связываться с рецепторами эндорфин-энкефалиновой системы человека (см. также НАРКОТИК). Это лишь один из многих примеров того, что химическое вещество иного биологического происхождения (в данном случае растительного) способно влиять на работу мозга животных и человека, взаимодействуя со специфическими нейромедиаторными системами. Другой хорошо известный пример – кураре, получаемое из тропического растения и способное блокировать ацетилхолиновые рецепторы. Индейцы Южной Америки смазывали кураре наконечники стрел, используя его парализующее действие, связанное с блокадой нервно-мышечной передачи.

ИССЛЕДОВАНИЯ МОЗГА

Исследования мозга затруднены по двум основным причинам. Во-первых, к мозгу, надежно защищенному черепом, невозможен прямой доступ. Во-вторых, нейроны мозга не регенерируют, поэтому любое вмешательство может привести к необратимому повреждению.

Несмотря на эти трудности, исследования мозга и некоторые формы его лечения (прежде всего нейрохирургическое вмешательство) известны с древних времен. Археологические находки показывают, что уже в древности человек производил трепанацию черепа, чтобы получить доступ к мозгу. Особенно интенсивные исследования мозга проводились в периоды войн, когда можно было наблюдать разнообразные черепно-мозговые травмы.

Повреждение мозга в результате ранения на фронте или травмы, полученной в мирное время, – своеобразный аналог эксперимента, при котором разрушают определенные участки мозга. Поскольку это единственно возможная форма «эксперимента» на мозге человека, другим важным методом исследований стали опыты на лабораторных животных. Наблюдая поведенческие или физиологические последствия повреждения определенной мозговой структуры, можно судить о ее функции.

Электрическую активность мозга у экспериментальных животных регистрируют с помощью электродов, размещенных на поверхности головы или мозга либо введенных в вещество мозга. Таким образом удается определить активность небольших групп нейронов или отдельных нейронов, а также выявить изменения ионных потоков через мембрану. С помощью стереотаксического прибора, позволяющего ввести электрод в определенную точку мозга, исследуют его малодоступные глубинные отделы.

Другой подход состоит в том, что извлекают небольшие участки живой мозговой ткани, после чего ее существование поддерживают в виде среза, помещенного в питательную среду, или же клетки разобщают и изучают в клеточных культурах. В первом случае можно исследовать взаимодействие нейронов, во втором – жизнедеятельность отдельных клеток.

При изучении электрической активности отдельных нейронов или их групп в различных областях мозга вначале обычно регистрируют исходную активность, затем определяют эффект того или иного воздействия на функцию клеток. Согласно другому методу, через имплантированный электрод подается электрический импульс, с тем чтобы искусственно активировать ближайшие нейроны. Так можно изучать воздействие определенных зон мозга на другие его области. Этот метод электрической стимуляции оказался полезен при исследовании стволовых активирующих систем, проходящих через средний мозг; к нему прибегают также и при попытках понять, как протекают процессы научения и памяти на синаптическом уровне.

Уже сто лет назад стало ясно, что функции левого и правого полушарий различны. Французский хирург П.Брока, наблюдая за больными с нарушением мозгового кровообращения (инсультом), обнаружил, что расстройством речи страдали только больные с повреждением левого полушария. В дальнейшем исследования специализации полушарий были продолжены с помощью иных методов, например регистрации ЭЭГ и вызванных потенциалов.

В последние годы для получения изображения (визуализации) мозга используют сложные технологии. Так, компьютерная томография (КТ) произвела революцию в клинической неврологии, позволив получать прижизненное детальное (послойное) изображение структур мозга. Другой метод визуализации – позитронная эмиссионная томография (ПЭТ) – дает картину метаболической активности мозга. В этом случае человеку вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга, причем тем больше, чем выше их метаболическая активность. С помощью ПЭТ было также показано, что речевые функции у большинства обследованных связаны с левым полушарием. Поскольку мозг работает с использованием огромного числа параллельных структур, ПЭТ дает такую информацию о функциях мозга, которая не может быть получена с помощью одиночных электродов.

Как правило, исследования мозга проводятся с применением комплекса методов. Например, американский нейробиолог Р.Сперри с сотрудниками в качестве лечебной процедуры производил перерезку мозолистого тела (пучка аксонов, связывающих оба полушария) у некоторых больных эпилепсией. В последующем у этих больных с «расщепленным» мозгом исследовалась специализация полушарий. Было выявлено, что за речь и другие логические и аналитические функции ответственно преимущественно доминантное (обычно левое) полушарие, тогда как недоминантное полушарие анализирует пространственно-временные параметры внешней среды. Так, оно активируется, когда мы слушаем музыку. Мозаичная картина активности мозга свидетельствует о том, что внутри коры и подкорковых структур существуют многочисленные специализированные области; одновременная активность этих областей подтверждает концепцию мозга как вычислительного устройства с параллельной обработкой данных.

С появлением новых методов исследования представления о функциях мозга, вероятно, будут видоизменяться. Применение аппаратов, позволяющих получать «карту» метаболической активности различных отделов мозга, а также использование молекулярно-генетических подходов должны углубить наши знания о протекающих в мозгу процессах. См. также НЕЙРОПСИХОЛОГИЯ.

СРАВНИТЕЛЬНАЯ АНАТОМИЯ

У различных видов позвоночных устройство мозга удивительно схоже. Если проводить сопоставление на уровне нейронов, то обнаруживается отчетливое сходство таких характеристик, как используемые нейромедиаторы, колебания концентраций ионов, типы клеток и физиологические функции. Фундаментальные различия выявляются лишь при сравнении с беспозвоночными. Нейроны беспозвоночных значительно крупнее; часто они связаны друг с другом не химическими, а электрическими синапсами, редко встречающимися в мозгу человека. В нервной системе беспозвоночных выявляются некоторые нейромедиаторы, не свойственные позвоночным.

Среди позвоночных различия в устройстве мозга касаются главным образом соотношения отдельных его структур. Оценивая сходство и различия мозга рыб, земноводных, пресмыкающихся, птиц, млекопитающих (в том числе человека), можно вывести несколько общих закономерностей. Во-первых, у всех этих животных строение и функции нейронов одни и те же. Во-вторых, весьма сходны устройство и функции спинного мозга и ствола головного мозга. В-третьих, эволюция млекопитающих сопровождается ярко выраженным увеличением корковых структур, которые достигают максимального развития у приматов. У земноводных кора составляет лишь малую часть мозга, тогда как у человека – это доминирующая структура. Считается, однако, что принципы функционирования мозга всех позвоночных практически одинаковы. Различия же определяются числом межнейронных связей и взаимодействий, которое тем выше, чем более сложно организован мозг. См. также АНАТОМИЯ СРАВНИТЕЛЬНАЯ.

Лобная доля мозга | Положение, функции, заболевания, состояния

Если есть одна часть мозга, которая отвечает как за эмоции, так и за суждения, это лобная доля . Точно так же это влияет на нашу личность, интеллект, поведение и самосознание.

Лобная доля мозга является центром планирования, речи, контроля движений тела, а также решения проблем. Интересно, что это центр, который позволяет нам писать и концентрироваться (1).

В этой статье мы подробнее остановимся на лобной доле мозга.А именно, мы обсудим его положение, анатомию, функции и строение. Наконец, мы рассмотрим состояния, вызванные повреждением лобной доли мозга и заболеваниями.

Положение лобной доли мозга

Прежде всего, лобная доля головного мозга - это самая большая часть нашего мозга . Во-вторых, как следует из названия, он расположен в передней части головы. Что еще более важно, лобная доля расположена в обоих полушариях.

Его анатомическое положение предполагает, что он распространяется от центральной борозды к переднему полюсу.Эта часть мозга содержит четыре лобных изгиба. Это:

  • Прецентральная кривая,
  • Верхний изгиб,
  • Средняя кривая,
  • Нижняя кривая (2).

Примечательно, что эта часть мозга содержит поля Брока. Этот сегмент лобной доли представляет собой первичную моторную кору. Кроме того, они содержат компонент Motor Speech. Во фронтальной доле также находится центр для управления желаемой горизонтальной ориентацией взгляда на противоположную сторону.

Очень важная часть лобной доли - это префронтальная кора. Он играет роль в планировании и выполнении двигательной активности, проявлении инициативы, мотивации, контроле эмоций и поведения. В этой доле находится корковый мочевой центр. Приток крови в лобную долю обеспечивается передней и средней церебральными артериями.

Функции лобной доли

Лобные доли отвечают за планирование и выполнение усвоенных и сознательных действий.Более того, лобная доля выполняет множество тормозных функций. В лобных долях как минимум 4 функционально обособленных области:

  • первичная моторная кора в прецентральной извилине (расположена наиболее сзади),
  • медиальные области,
  • области орбиты,
  • боковые области (префронтальные области).

Медиальная лобная область отвечает за осведомленность и мотивацию. Фронтальная область орбиты помогает формировать социальное поведение.Нижнебоковая область отвечает за лингвистические функции, а дорсолатеральная область управляет только что полученной информацией. Поэтому функционально она называется «рабочая память».

Первичная моторная кора контролирует все произвольные движения контралатеральной стороны тела (каждая часть тела проецируется в первичную моторную кору в виде строго определенной пространственной карты).

Поскольку 90% волокон первичной моторной коры пересекают медиальную линию в области ствола головного мозга, повреждение моторной коры одной доли вызывает слабость противоположной стороны тела.Кроме того, в определенных частях лобной доли расположены центры распознавания запахов.

Заболевания и состояния, связанные с лобной долей мозга

Одно из первых условий, которое мы рассмотрим, - это депрессия . Сегодня мы с уверенностью знаем, что одной из основных характеристик практически всех депрессивных людей - независимо от первопричины депрессии - является значительное уменьшение кровотока в лобной доле и нарушение ее активности.

Эта пониженная активность обнаруживается в наиболее выступающей части лобной доли.Она называется « префронтальной коры ». Это часть мозга, которая действительно представляет собой центр управления мозгом.

Однако это гораздо больше. Мы знаем, что префронтальная кора отвечает за планирование поведения, принятие решений, эмоциональный контроль, самосознание и независимость от других людей.

Депрессия может быть вызвана инсультом в медиальной части лобной доли. Последствия этих инсультов включают эмоциональную нестабильность.Вообще говоря, депрессия не вызывается инсультами в других частях мозга.

Более того, повреждение лобной доли мозга может быть результатом хирургического удаления, травмы или инсульта. Это также может быть следствием болезни Альцгеймера . Независимо от процесса, повреждающего лобную долю, последствия обычно одинаковы.

Пациенты, страдающие болезнью Альцгеймера с повреждением лобной доли, были значительно более подавлены. У них также гораздо больше шансов иметь другие поведенческие проблемы, такие как беспокойство, самообман и отсутствие самодисциплины.

Пациенты с серьезным повреждением лобной части паренхимы головного мозга , распространяющейся на передний фронтальный полюс, иногда становятся непроизвольно апатичными, не желают предпринимать никаких действий и имеют заметно замедленную реакцию. Пациенты с нарушениями в лобной области глазницы могут стать эмоционально лабильными, нечувствительными к последствиям своих действий или и того, и другого.

Они также могут изменить свое поведение , когда дело доходит до выражения эйфории, юмора и даже пошлости, а также становятся невосприимчивыми к социальному этикету (3).Взаимное острое повреждение этой префронтальной области может вызвать у пациентов сильную боль, беспокойство и социальную дисфункцию.

С возрастом, особенно при различных формах деменции, дегенерация лобных долей приводит к растормаживанию и неправильному поведению.

Повреждение нижнебоковой области (область Брока) вызывает моторную афазию (нарушение обучения и выражения. Поражение дорсолатеральной лобной области может снизить способность сохранять информацию и обрабатывать ее в режиме реального времени (например,г. написание слов в обратном порядке, различение цифр и букв последовательно).

Синдром лобной доли - симптомы

Повреждение первичной моторной коры вызывает моноплегий или гемиплегий противоположной половины тела (4). Мышечный тонус повышен, рефлексы усилены. Отмечаются также патологические рефлексы типа бабинского.

Травма дополнительной моторной коры головного мозга вызывает нарушение самопроизвольных движений и апраксию.Из-за пересечения двигательных путей эти изменения присутствуют на противоположной стороне тела. Что касается вспомогательной моторной коры, синдром лобной доли также характеризуется трудностями в инициировании движений тела.

Заключение

Лобная доля головного мозга расположена сразу за лбом. Это самая большая доля коры . Можно сказать, что лобная доля - это центр управления мозгом. Он играет важную роль в решении проблем, планировании, контроле над импульсами, рассуждении, а также контроле эмоций и поведения.

Список литературы
  1. Коллинз А., Коечлин Э. Рассуждения, обучение и творчество: функция лобной доли и принятие решений человеком. PLoS Biol. 2012; 10 (3): e1001293. DOI: 10.1371 / journal.pbio.1001293. Epub 2012, 27 марта. PMID: 22479152; PMCID: PMC3313946. Можно найти в Интернете по адресу: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313946/
  2. Хоффманн М. Лобные доли человека и фронтальные сетевые системы: эволюционная, клиническая и лечебная перспектива.ISRN Neurol. 2013; 2013: 892459. DOI: 10,1155 / 2013/892459. Epub 2013 14 марта. PMID: 23577266; PMCID: PMC3612492. Можно найти в Интернете по адресу: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612492/
  3. Séguin JR. Лобная доля и агрессия. Eur J Dev Psychol. 2009, 5 января; 6 (1): 100-119. DOI: 10.1080 / 17405620701669871. PMID: 24976846; PMCID: PMC4072650. Можно найти в Интернете по адресу: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072650/
  4. Пирау Л., Луи Ф.Синдром лобной доли. [Обновлено 19 декабря 2018 г.]. В: StatPearls [Интернет]. Остров сокровищ (Флорида): StatPearls Publishing; 2019 Янв. Можно найти в Интернете по адресу: https://www.ncbi.nlm.nih.gov/books/NBK532981/

Где в мозгу хранятся воспоминания? - Квинслендский институт мозга

Воспоминания хранятся не только в одной части мозга. Различные типы хранятся в разных взаимосвязанных областях мозга. Для явных воспоминаний - которые касаются событий, которые произошли с вами (эпизодические), а также общих фактов и информации (семантические) - есть три важных области мозга: гиппокамп, неокортекс и миндалевидное тело. Неявные воспоминания , такие как моторные воспоминания, зависят от базальных ганглиев и мозжечка. Кратковременная рабочая память больше всего полагается на префронтальную кору.

Части мозга, участвующие в памяти (Иллюстрация Левента Эфе)

Явная память

В явной памяти участвуют три области мозга: гиппокамп, неокортекс и миндалевидное тело.

Гиппокамп

В гиппокампе, расположенном в височной доле мозга, формируются эпизодические воспоминания, которые индексируются для последующего доступа.Эпизодические воспоминания - это автобиографические воспоминания об определенных событиях в нашей жизни, например о кофе, который мы пили с другом на прошлой неделе.

Откуда мы это знаем? В 1953 году пациенту по имени Генри Молезон хирургическим путем удалили гиппокамп во время операции в США по лечению эпилепсии. Его эпилепсия была вылечена, и Молезон прожил еще 55 лет здорового возраста. Однако после операции он смог сформировать только эпизодические воспоминания, которые длились считанные минуты; он был совершенно неспособен постоянно хранить новую информацию.В результате память Молисона в основном ограничивалась событиями, произошедшими за годы до операции, в далеком прошлом. Тем не менее, он все еще был в состоянии улучшить свои результаты при выполнении различных двигательных задач, хотя он не помнил, чтобы когда-либо сталкивался с ними или выполнял их. Это указывает на то, что, хотя гиппокамп имеет решающее значение для накопления воспоминаний, он не является местом постоянного хранения памяти и не нужен для двигательных воспоминаний.

Исследование Генри Молезона было революционным, поскольку показало, что существует множество типов памяти.Теперь мы знаем, что имплицитное моторное обучение происходит не в гиппокампе, а в других областях мозга - базальных ганглиях и мозжечке.

Neocortex

Неокортекс - это самая большая часть коры головного мозга, лист нервной ткани, которая формирует внешнюю поверхность мозга, отличающуюся у высших млекопитающих своим морщинистым видом. У людей неокортекс участвует в высших функциях, таких как сенсорное восприятие, генерация моторных команд, пространственное мышление и язык.Со временем информация из определенных воспоминаний, которые временно хранятся в гиппокампе, может быть передана в неокортекс в качестве общих знаний - например, знание того, что кофе дает заряд энергии. Исследователи считают, что этот перенос из гиппокампа в неокортекс происходит во время сна.

Миндалевидное тело

Миндалевидное тело, миндалевидная структура в височной доле мозга, придает эмоциональное значение воспоминаниям. Это особенно важно, потому что сильные эмоциональные воспоминания (например,г. те, которые связаны со стыдом, радостью, любовью или горем), трудно забыть. Постоянство этих воспоминаний предполагает, что взаимодействия между миндалевидным телом, гиппокампом и неокортексом имеют решающее значение для определения «стабильности» памяти, то есть того, насколько эффективно она сохраняется с течением времени.

Есть еще один аспект, связанный с вовлечением миндалины в память. Миндалевидное тело не просто изменяет силу и эмоциональное содержание воспоминаний; он также играет ключевую роль в формировании новых воспоминаний, связанных со страхом.Ужасающие воспоминания могут образоваться после нескольких повторений. Это делает «обучение со страхом» популярным способом исследования механизмов формирования, консолидации и припоминания памяти. Понимание того, как миндалевидное тело обрабатывает страх, важно из-за его отношения к посттравматическому стрессовому расстройству (ПТСР), от которого страдают многие из наших ветеранов, а также полиция, парамедики и другие люди, подвергшиеся травмам. Беспокойство в учебных ситуациях также может затронуть миндалину и может привести к избеганию особенно сложных или стрессовых задач.

Исследователи

QBI, включая профессора Панкаджа Саха и доктора Тимоти Бреди, считают, что понимание того, как воспоминания о страхе формируются в миндалевидном теле, может помочь в лечении таких состояний, как посттравматическое стрессовое расстройство.

Неявная память

В имплицитной памяти задействованы две области мозга: базальные ганглии и мозжечок.

Базальные ганглии

Базальные ганглии - это структуры, лежащие глубоко внутри мозга и участвующие в широком спектре процессов, таких как эмоции, обработка вознаграждений, формирование привычек, движения и обучение.Они особенно вовлечены в координацию последовательности двигательной активности, которая может потребоваться при игре на музыкальном инструменте, танцах или игре в баскетбол. Базальные ганглии - это области, наиболее пораженные болезнью Паркинсона. Это проявляется в нарушении движений пациентов с болезнью Паркинсона.

Мозжечок

Мозжечок, отдельная структура, расположенная в задней части мозга, играет наиболее важную роль в управлении мелкой моторикой, которая позволяет нам использовать палочки для еды или нажимать эту клавишу фортепиано чуть мягче.Хорошо изученным примером моторного обучения мозжечка является вестибулоокулярный рефлекс, который позволяет нам удерживать взгляд на каком-либо месте, когда мы поворачиваем голову.

Рабочая память

Префронтальная кора

Префронтальная кора (ПФК) - это часть неокортекса, которая находится в самом передней части мозга. Это самое последнее дополнение к мозгу млекопитающих, которое участвует во многих сложных когнитивных функциях. Исследования нейровизуализации человека с использованием аппаратов магнитно-резонансной томографии (МРТ) показывают, что когда люди выполняют задачи, требующие от них хранения информации в их кратковременной памяти, например, местоположение вспышки света, PFC становится активным.Также, похоже, существует функциональное разделение между левой и правой сторонами PFC: левая больше участвует в вербальной рабочей памяти, а правая более активна в пространственной рабочей памяти, например, в запоминании того, где произошла вспышка света.

Как развивается наша память - Любопытно

Вы когда-нибудь задумывались, почему не можете вспомнить, что были младенцем? Или почему вы можете легко запомнить все слова песни, которую выучили в подростковом возрасте, даже если это было 20 (или более) лет назад?

Ответы на эти вопросы могут заключаться в том, как наша система памяти развивается по мере того, как мы превращаемся из младенца в подростка и в раннюю взрослую жизнь.Когда мы рождаемся, наш мозг еще не полностью развит - он продолжает расти и меняться в этот важный период нашей жизни. И по мере развития нашего мозга развивается и наша память. Давайте побродим по переулку памяти и посмотрим.

Эм ... Что еще за воспоминание?

Во-первых, краткий обзор основ.

Память - это не видеокамера

Многие из нас думают о своей памяти как о записывающем устройстве, например, о видеокамере.Мы представляем, как он точно записывает события в деталях, которые мы можем на более позднем этапе извлечь, просто нажав кнопку «воспроизведение».

Но это представление видеокамеры о памяти не совсем точное. Это потому, что воспоминания - это не просто статические записи, к которым «есть» доступ. Скорее, воспоминания динамичны - они всегда меняются. Со временем они могут становиться сильнее или слабее. Они могут искажаться, и ими можно манипулировать. То, что мы помним и как мы запоминаем, зависит от того, когда мы запоминаем, и какой смысл и опыт мы привносим в это воспоминание.Фактически, каждый раз, когда мы что-то вспоминаем, мы немного меняем это воспоминание.

Воспоминания создаются при срабатывании нейронов

Нейроны - это нервные клетки, которые посылают друг другу электрохимические сигналы. Когда человек обрабатывает событие, нейроны мозга передают информацию через синапсы (крошечные промежутки между нейронами). Это побуждает окружающие нейроны начать активироваться, создавая сеть соединений различной силы. Именно это постоянное изменение силы и структуры связей и является «воспоминанием».

Существуют разные виды памяти

Существует несколько видов памяти. Это может быть явное (осознанное запоминание) или неявное (бессознательное). Хорошо запоминает факты и цифры? Это то, что называется вашей семантической памятью. Сможете ли вы избить своего партнера в Pacman, даже не задумываясь, даже если вы не играли много лет? Вы можете поблагодарить свою процедурную память, которая связана с приобретенными двигательными навыками.

Воспоминания хранятся в разных, взаимосвязанных частях мозга
Воспоминания не хранятся в одном месте мозга.Скорее, разные (взаимосвязанные) части мозга специализируются на разных типах воспоминаний. Например, область мозга, называемая гиппокампом, важна для хранения воспоминаний об определенных событиях, произошедших в вашей жизни, известных как эпизодические воспоминания.
Воспоминания формируются нейронами (на фото), которые активируются в нашем мозгу, создавая или изменяя сети связей. Источник изображения: ZEISS Microscopy / Flickr.
  • Корпус HM

    Захватывающий случай Генри Молисона, известный как «HM», дал ученым возможность понять природу памяти и то, как она хранится в мозгу.

    В 1950-х годах для лечения эпилепсии, выводящей из строя, HM перенес серьезную операцию, в ходе которой ему удалили гиппокамп и часть прилегающей территории. Процедура уменьшила его припадки, но резко повлияла на его память. Всю оставшуюся жизнь Х.М. не мог сформировать никаких долговременных воспоминаний и не мог вспомнить конкретные автобиографические события из своей жизни. Тем не менее, он все еще мог изучать новые моторные навыки и мог повторять их позже, хотя он не мог вспомнить, как выучил их.

    До HM считалось, что когда вы что-то вспоминаете, все нейроны в вашем мозгу работают вместе, чтобы вызвать воспоминание. Но случай с HM показал, что разные области мозга отвечают за разные виды памяти. А гиппокамп, кажется, особенно важен для памяти, особенно конкретных автобиографических событий (эпизодическая память).

    Интересно, что одним исключением из неспособности HM вспомнить автобиографические события было его воспоминание о поездке на самолете в день рождения вокруг Хартфорда, возможно, потому, что это имело огромное эмоциональное значение.

От рождения до юности

Младенчество и детство

Можете ли вы вспомнить свой первый день рождения? Ваш второй? Если нет, не паникуйте - вы не одиноки. Взрослые редко вспоминают события, произошедшие до трехлетнего возраста, и имеют неоднозначные воспоминания, когда речь идет о вещах, которые произошли с ними в возрасте от трех до семи лет. Это явление известно как «детская амнезия».

Так почему же так трудно вспомнить, когда я был младенцем или малышом? Просто потому, что наши первый, третий и даже седьмой дни рождения произошли очень давно, и наши воспоминания, естественно, потускнели? Не обязательно. Фактически, 40-летний взрослый обычно имеет очень сильные воспоминания о подростковом возрасте (подробнее об этом позже), который для них произошел более 20 лет назад. С другой стороны, 15-летний подросток вряд ли вспомнит что-то, что произошло, когда им было два года, даже если это произошло всего 13 лет назад.

Что помнят младенцы?

Раньше считалось, что причина того, что мы не можем вспомнить большую часть своего раннего детства, заключается в том, что, будучи маленькими детьми, мы просто не можем стабильно запоминать события. Логика гласит, что нельзя получить доступ к памяти, если ее там нет!

Но оказывается, что младенцы и маленькие дети могут формировать и формируют воспоминания. Это включает как неявные воспоминания (например, процедурные воспоминания, которые позволяют нам выполнять задачи, не думая о них), так и явные воспоминания (например, когда мы сознательно вспоминаем событие, которое произошло с нами).

Однако наша способность запоминать вещи в течение длительного времени постепенно улучшается в детстве. В экспериментах, в которых маленьких детей учили имитировать действие, например, шестимесячные дети могли помнить, что делать в течение 24 (но не 48) часов, а девятимесячные могли помнить, что делать в течение одного месяца (но не три месяца) спустя. К 20 месяцам младенцы все еще могли помнить, как выполнять задание, которое им показывали годом ранее.

Интересно, что недавнее исследование на крысах показало, что, несмотря на очевидную потерю ранних эпизодических воспоминаний, скрытый след воспоминаний о раннем опыте сохраняется в течение длительного периода времени - и может быть вызван более поздним напоминанием.Это может объяснить, почему ранняя травма может повлиять на поведение взрослых и увеличить риск психических расстройств в будущем.

Ты можешь вспомнить свой первый день рождения? Большинство из нас не могут - это явление известно как детская амнезия. Источник изображения: Джастин МакГрегор / Flickr.
Наш меняющийся мозг

Нейробиологи, изучающие память у животных (таких как крысы и обезьяны), обнаружили, что не только люди страдают инфантильной амнезией. Кажется, это обычное явление для животных, чей мозг, как и наш, продолжает развиваться после рождения.При рождении человеческий мозг составляет всего четверть от размера взрослого. К двум годам это будет три четверти размера мозга взрослого человека. Это изменение размера коррелирует с ростом нейронов, а также с тестированием и сокращением связей (подробнее об этом позже). Итак, что означает для нашей памяти тот факт, что наш мозг все еще развивается в младенчестве и раннем детстве?

Детская амнезия, по-видимому, обычна для животных, мозг которых продолжает развиваться после рождения. Источник изображения: Имтиаз Ахмед / Flickr.

Давайте взглянем на гиппокамп - ту часть мозга, которая особенно важна в формировании эпизодических воспоминаний (воспоминаний о событиях, которые произошли с нами). Хотя многие части мозга продолжают развиваться и изменяться после нашего рождения, это одна из немногих областей, которая продолжает производить новые нейроны во взрослом возрасте. Например, когда мы маленькие, часть гиппокампа, называемая зубчатой ​​извилиной, находится в состоянии перегрузки, производя нейроны с большой скоростью. Эти новые нейроны затем интегрируются в цепи гиппокампа.Хотя производство новых нейронов продолжается во взрослом возрасте, скорость их активности снижается.

Ученые считают, что такая высокая скорость производства нейронов в детстве может способствовать более высокому уровню забвения в молодом возрасте. Как? Формируя новые связи со схемами памяти, массы новых нейронов могут нарушить существующие сети уже сформированных воспоминаний.

Просмотр эмоционального фильма после учебы может помочь вам получить более высокие оценки. Источник изображения: charamelody / Flickr.
  • Почувствуй, помни

    Подумайте о действительно сильных воспоминаниях. Скорее всего, вы вспомните время, которое было особенно счастливым, особенно грустным или очень страшным. Именно эти эмоциональные переживания формируют наши самые яркие воспоминания.

    Но почему эмоциональные воспоминания, как хорошие, так и плохие, настолько сильны? Ответ кроется в небольшой структуре мозга, называемой миндалевидным телом (произносится как у-миг-да-ла), эмоциональным центром мозга. Возможно, вы слышали о миндалевидном теле в связи со стрессом или тревогой.Это часть мозга, которая активируется в ответной реакции «бей или беги», вызывая выброс гормонов стресса, которые заставляют ваше сердце биться, готовое убежать от предполагаемой опасности или вступить в битву с ней.

    Миндалевидное тело также играет важную роль в создании сильных воспоминаний, придавая им эмоциональное значение. Он запускает гормоны, которые заставляют ваше сердце биться быстрее, а также взаимодействует с гиппокампом, чтобы укрепить память или нейронную запись определенного эмоционального переживания.